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GENERALIZED INTEGRAL TRANSFORM SOLUTION FOR 
BOUNDARY LAYER FLOW OVER A SPHERE 

P. L. C. LAGE* AND R. H. RANGEL 
Department of Mechanical and Aerospace Engineering, University of Calijornia, Irvine, CA 9271 7, USA 

SUMMARY 

The generalized integral transform technique is applied to the boundary layer equations for flow over a 
sphere in their primitive variables. Even though a diffusion-based eigenvalue problem is used, the velocity 
profile, shear stress and separation point have been calculated with high accuracy. Low-order approxima- 
tions are shown to be accurate near the surface and the predictions of the separation point is very good. 
Comparison with finite difference results shows the better convergence behaviour of the integral transform 
method. 
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1. INTRODUCTION 

The application of integral transformations in the solution of linear diffusive problems is well 
known and has been reviewed by Mikhailov and Oziqik.' Recently a generalization of the integral 
transform method has been developed and successfully applied to diffusionxonvection pro- 
b l e m ~ . ~ . ~  The application of this method to partial differential equations has some similarity 
to the method of lines and spectral methods, because it transforms all the existing derivatives 
(except those in the parabolic direction) into algebraic terms. This procedure generates a system 
of ordinary differential equations which can be readily integrated. However, the generalized 
integral transform approach analytically operates the equations using an integral transformation. 
This transformation is generated by an eigenvalue problem based on the original set of equations, 
including the diffusive terms and, sometimes, convective terms. It represents the unknown 
functions using exact infinite series expansions in terms of the orthogonal set of eigenfunctions. 
Thus the unknown function dependence on all but one of the independent variables is known 
analytically. This enables one to use the series truncation error to monitor the accuracy of the 
solution during the integration procedure. Since ordinary differential equation solvers are 
extremely reliable and powerful nowadays, this method avoids completely the problems of 
stability and internal iterative procedures present in the finite difference solutions of non-linear 
partial differential equations. Although the generalized integral transform technique still has 
some shortcomings, e.g. some inability in handling non-homogeneous boundary conditions, it 
is undoubtedly a powerful method of solving partial differential equations. 

The generalized integral transform method has been applied to convective heat transfer in 
ducts,'-6 parabolic diffusion problems in finite and the Navier-Stokes equations in 
a square ~ a v i t y . ~  Its application to parabolic diffusion problems in external domains is the aim 
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of the present work. The constant-property boundary layer equations constitute a well-known 
problem which is parabolic diffusive in terms of its primitive variable (the velocity components). 
Moreover, it is a convection-dominated problem with a non-homogeneous boundary condition 
at infinity, which represents a challenge to the application of the integral transform method. 
Thus it has been chosen as the working problem to illustrate the application of the finite integral 
transform method to parabolic diffusive partial differential equations in infinite domains. 

2. ANALYSIS 

The constant-density boundary layer equations for flow over axisymmetric bodies are given 
by Schlichting." When curvature effects are neglected, they can be written in the dimensionless 
form 

where 

with the boundary conditions 

q = o :  u=o, v=o, 
-+ ~ 0 :  u = u,(t) -+ 2 sin 5 or au/aq -, 0, 

t = o :  u=o,  
where all the symbols are as defined in Appendix 11. 

In order to generate an integral transformation through the infinite series of orthogonal 
solutions of a homogeneous eigenvalue problem, the boundary conditions at infinity must be 
substituted by 

q = H :  aulaq = 0, (6) 

where H is a sufficiently large parameter. Thus, considering the diffusion term in equation (2), 
the following eigenvalue problem is built: 

d2$kldq2 + f l i $ k  = 0, 

q = 0: * k =  0; q = H :  a$kjaq = 0. 

This enables the development of the integral transform pair 

(7) 
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where 

whose norm is Nk = 0.5H for every k. 
Using equation (8), the continuity equation (1) can be transformed into 

where f is as defined in Appendix I. 
The integral transformation of the momentum equation (2), using equation (8) to express the 

non-linear terms and equation (1 l), produces the following infinite set of non-linear ordinary 
differential equations: 

where A ,  F and P are as defined in Appendix I. In order to be numerically solvable, this system 
must be truncated at  some value, say k = N .  The resulting finite system of non-linear differential 
equations is amenable for numerical integration along the (-variable. However, it should be 
noticed that equation (12) vanishes identically for c = 0 for every k, i.e. when U = 0. 
Accordingly, the integration cannot be started at ( = 0. In order to overcome this limitation, 
the stagnation point flow solution is evoked, which can be expressed in the form 

u = 2 d4/dq, (13) 

(14) $#I”’ + 244” + 1 - 4 ’ 2  = 0, 

q = o :  4 = 0 ,  @ = O ;  q - 0 0 :  @ = l ,  

where the primes denote differentiation with respect to q. The boundary condition at infinity is 
also imposed at = H in order to solve equation (14) numerically. 

3. NUMERICAL PROCEDURE 

Firstly, equation (14) is solved by a finite difference scheme with a non-uniform adaptive grid 
which is able to return grid point values for any desired accuracy. Then trapezoidal quadrature 
based on these grid points and equation (13) are used to calculate the transformed velocity 
components q, from the integral transform definition (9) at a point close to 5 = 0. It has been 
verified that the results do not vary as long as the starting (-value remains small (( = 0.01 was 
usually adopted for the starting point). Moreover, care has been taken to use enough points per 
period of the eigenfunctions in order to guarantee good precision in the quadrature integration 
for determining the c initial values. A relative precision was typically required, which 
generated a grid with 2000-3000 points. 

The system of ordinary differential equations given by (12), truncated to N terms in the 
summations, was treated as a differential algebraic system of equations and its numerical 
integration was carried out using DAWRS (differential algebraic wave-form relaxation sol- 
ver).”.’’ The system Jacobian was calculated analytically and the results obtained were identical 
to those obtained when DAWRS was allowed to approximate the Jacobian by finite differences. 
The required relative precision during the integrations was typically 10- ‘. The integration was 
performed up to the separation point. At this point, for large N-values, the DAWRS corrector 
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step was unable to converge. This seems to be caused by the breakdown of the assumptions 
which lead to the boundary layer equations, which are no longer valid. However, it was possible 
to integrate as close as desired to the separation point. The values obtained for the normal 
derivative of the dimensionless tangential velocity component at  the surface and at a point close 
to the separation point were typically of the order of 10-2-10-3. Since this derivative decreases 
very sharply near the separation point, there is no appreciable difference between the last 
integration point and the separation point. 

The integral transform solution was compared with a finite difference solution of the same set 
of equations (equation (l), (2) and (5) but with a different boundary condition for the external 
flow (U = U ,  at q = H). A fully implicit scheme with a uniform grid in q was marched in the 
(-direction using uniform 0.05 increments. A precision of four figures was required in the inner 
loop for evaluation of the non-linear terms. 

The value chosen for H has been varied until convergence was achieved. It should be pointed 
out that although a large H-value brings the assumed boundary condition closer to the true 
one, it is desirable to have the smallest possible H-value. The reason is the increase in 
computational effort due to an increase in the number of grid points in the finite difference 
solution and in the number of eigenfunctions in the integral transform solution. A value H = 6 
was shown to be appropriate. 
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4. RESULTS AND DISCUSSION 

Figures 1-3 show the convergence behaviour of the dimensionless velocity profile U(q)  at ( = x/6, 
n/3 and 4 2  respectively with increasing N. It is clear that the even-N series expansions converge 
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Figure 1. Dimensionless tangential velocity profile at 5 = n/6 
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Figure 2. Dimensionless tangential velocity profile at 5 = n/3 
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Figure 3. Dimensionless tangential velocity profile at 5 = n/2 
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to the exact solution from below whereas the odd-N series expansions converge to it from above. 
Besides, the even-N series expansions have a slightly better convergence behaviour than the 
odd-N series expansions. The oscillatory character of the solution for small N is evidently caused 
by the series expansion in sine functions. Tables 1-111 give the U(r])-profiles for 4 = 46, 4 3  and 
n/2 respectively for the integral transform solution using 20, 40 and 50 eigenfunctions and for 
the finite difference (FD) solution using 31 and 61 grid points in the r]-direction. The convergence 
of the U series expansion (equation (9)) is also shown by the maximum relative value of the last 
term in relation to the overall series value (which gives an idea of the truncation error in the 
series summation). It is interesting to notice that the ideal flow solution at q = H is imposed on 
the finite-difference method but is not the boundary condition in the integral transform method. 
Thus the accuracy of the integral transform solution can be inferred by comparison of the 
U-value at the outer boundary and the ideal flow solution. Comparing the results for the two 
numerical methods, the better convergence behaviour of the integral transform method is clear 
through the accuracy of its lower-order approximations near the surface. Besides, the integral 
transform solution with 40 terms, when compared with the 50-term solution, is accurate to three 
figures almost everywhere. 

Figure 4 shows the convergence behaviour of the dimensionless normal derivative of the 
tangential velocity at the surface with increasing N. This derivative is related to the shear stress 
at the surface by 

Table 1. Dimensionless tangential velocity profiles for = 4 6  
(H = 0.6) 

'I U u (FD) 

N No. of points 
20 40 50 31 61 

0.00 0~oO00 O ~ o o o o  0~0oO0 O ~ o o o o  O ~ o o o o  
0.20 0.2056 0.2067 0.2065 0.2105 0.2065 
040 0.3742 0.3740 0,3741 0.3801 0.3733 
060 0.5018 05036 0.5038 0-5094 0.5014 
0.80 0.5969 0.5983 05984 0.6020 0.5943 
1.00 0.661 1 0.6627 0.6628 0.6636 0.6572 
1.20 0.7006 07032 0.7034 0.7014 0.6966 
1.40 0.7242 0.7268 0.7270 0.7227 0.7195 
1.60 0.7362 0.7391 0.7394 0.7336 0.7317 
1.80 0.7412 0.7450 0,7454 0.7389 0.7379 
2.00 0.7436 0.7476 0.7480 0.7414 0.7409 
3.00 0.7419 07487 0.7494 0.7451 0.7450 
4.00 0.7392 07483 0.7491 0.747 1 0.747 1 
5.00 0.7365 0.7479 0.7489 0.7487 0.7487 
6.00 0.7336 0.7475 0,7487 0.7500 0.7500 

Maximum relative contribution of 

- 0.0014 O.OOO1 3 x - - 
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Table 11. Dimensionless tangential velocity profiles for { = n/3 
( H  = 0.6) 

tl U u (FD) 

N No. of points 
20 40 50 31 61 

0.00 0 - m  0 - m  0-oooo ooooo O ~ o o o o  
0.20 0.2906 0.2919 0.2917 0.2935 02899 
0.40 0,5430 0.5433 0.5435 0.5463 0.5395 
0.60 0,751 1 0.7535 0.7539 0.7564 0.7474 
0.80 0.9201 0.9224 0.9226 0,9234 0.9136 
1.00 1.0485 1.0512 1.0515 0.1496 1.0402 
1.20 1.1403 1.1442 1.1446 1.1397 1.1316 
1.40 1.2035 1.2076 1.2080 1.2003 1.1940 
1.60 1.2432 1.2480 1.2484 1.2385 1.2340 
1.80 1.2661 1.2719 1.2724 1.2611 1.2581 
2.00 1.2790 1.2852 1.2857 1.2738 1.2719 
3.00 1.2872 1.297 1 1.2980 1.2876 1.2874 
4.00 1.2840 1.2968 1.2979 1.2907 1.2907 
5.00 1.2813 1.2964 1.2977 1.2944 1.2944 
6.00 1.2792 1.2961 1.2975 1 -2990 1 -2990 

Maximum relative contribution of 

- 0*0010 6 x lo-' 2 x - - 

Table 111. Dimensionless tangential velocity profiles for { = 4 2  
( H  = 0.6) 

tl U u (FD) 

N No. of points 
20 40 50 31 61 

0.00 o+oooo O.oo00 0~0000 0~oO00 o.Oo00 
0.20 0.1853 0.1859 0.1860 1.1808 0.1857 
0.40 0.3689 0.3702 0.3704 0.3613 0.3702 
0.60 0.5474 0.5495 0.5497 0.5385 0.5499 
0.80 0.7165 0.7193 0.7195 0.7074 0.7199 ' 
1.00 0,8719 0.8753 0.8756 0.8627 0.8749 
1.20 1,0099 1.0139 1.0143 1~0002 1.0111 
1.40 1,1282 1.1329 1.1333 1.1 172 1.1263 
1.60 1.2260 1.2312 1.2317 1.2128 1.2199 
1.80 1.3037 1.3094 1.3100 1.2881 1.2934 
2.00 1.3629 1.3693 1-3698 1.3452 1.3491 
3.00 1.4778 1.4871 1.4879 1.4606 1.46 1 7 
4.00 1.4853 1.4975 1.4985 1.4767 1.4775 
5.00 1.4834 1.4975 1.4987 1.4828 1.4832 
6.00 1.4826 1.4974 1.4987 1.5000 1.5000 

~~ 

Maximum relative contribution of 

- 7 x 10-6 4 x 10-7 1 x 10-7 - - 
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Figure 4. Dimensionless shear stress at surface 

The dimensionless derivative values prediced by the finite difference solution using 31 and 61 
grid points are also shown in Figure 4 for 5 = n/6, n/3 and n/2. It can be seen that the integral 
transform solution for N = 20 is as accurate as the finite difference solution with 61 grid points. 
Since this derivative is calculated analytically in the integral transform method whereas it is 
fully numerical in the finite difference solution, its prediction by the integral transform method 
was expected to be much more accurate. 

Table IV gives the values for the separation point obtained using the integral transform 
solution with several values of N. It should be noted that for N = 6 the separation point was 
considered to be the point where the tangential velocity derivative at the surface reached a 
minimum. At this small N-value the solution obtained is not good enough to predict the 

Table IV. Separation point values pre- 
dicted by integral transform solution 

N Separation point (deg) 

6 
10 
20 
30 
40 
50 

105.5 
104.7 
104.9 
105.0 
104.8 
104.8 
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derivative values well. However, the separation point determined through this consideration is 
in good agreement with the values obtained for larger N .  Moreover, the converged value of 
104.8” agrees remarkably well with the most accurate value obtained by finite differences cited 
by White,I3 which is 105.5”. 

5. CONCLUSIONS 

The generalized integral transform technique has been applied to the boundary layer equations 
in primitive variables and the results compared with those obtained by the finite difference 
solution for the same set ofequations but with the boundary condition for external flow. Similarly 
to other numerical methods, the condition at  infinity was applied to a finite but sufficiently far 
distance from the surface. In this way the integral transform method based on finite domains 
could be applied to a problem with an infinite domain. Although applied to a parabolic system 
where convection is extremely important, the generalized integral transform technique based on 
a diffusive eigenvalue problem has proved to be accurate and reliable. Its low-order approxima- 
tions are able to predict accurately the velocity profile near the surface and the separation point. 
High-order approximations predict the velocity profile and shear stress at the surface with high 
accuracy. Moreover, it has shown better convergence characteristics than the finite difference 
method. However, further improvement in the eigenvalue problem by the inclusion of a 
convective term is possible and might lead to even better convergence behaviour. 
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APPENDIX I 

Several auxiliary variables have been used in the analysis section to simplify the notation. They 
are defined below and their analytically calculated values are also given: 
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APPENDIX 11: NOMENCLATURE 

auxiliary variable 
auxiliary variable 
auxiliary variable 
dimensionless pressure term, U ,  dU,/dr 
dimensionless normal distance where the boundary condition at q + a3 is applied 
eigenfunction norm 
auxilary variable 
surface-axis-of-symmetry distance 
Reynolds number, u, Rfv 
tangential velocity 
outer-flow tangential velocity (ideal flow) 
freestream velocity 
dimensionless tangential velocity, u/u, 
dimensionless outer-flow tangential velocity, u,/u, 
integral-transformed dimensionless tangential velocity 
normal velocity 
dimensionless normal velocity, , / (Re)o/u, 
tangential co-ordinate 
normal co-ordinate 

Greek letters 

fl  eigenvalue 
[ dimensionless surface-axis-of-symmetry distance, r /R  
q dimensionless normal co-ordinate, J(Re)y /R 
v kinematic viscosity 
t dimensionless tangential co-ordinate, x / R  
7 ,  shear stress at surface 
6 
$ eigenfunction 

dimensionless streamfunction for stagnation point flow (equation (14)) 
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